
Field Crops Research 258 (2020) 107960

Available online 5 October 2020
0378-4290/© 2020 Elsevier B.V. All rights reserved.

The impact of different morphological and biochemical root traits on 
phosphorus acquisition and seed yield of Brassica napus 

Xianjie Duan a,b, Kemo Jin c,**,1, Guangda Ding a,b, Chuang Wang a,b, Hongmei Cai a,b, 
Sheliang Wang a,b, Philip J. White a,d, Fangsen Xu a,b, Lei Shi a,b,*,1 

a National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, PR China 
b Microelement Research Centre, Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, 
Huazhong Agricultural University, Wuhan 430070, China 
c College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, Key Laboratory of Plant-Soil Interactions, Ministry of 
Education, China Agricultural University, 100193 Beijing, China 
d The James Hutton Institute, Invergowrie, Dundee DD2 5DA, UK   

A R T I C L E  I N F O   

Keywords: 
Brassica napus L. 
Coarse root length 
Root surface area 
Seed yield 
Total P content 

A B S T R A C T   

Oilseed rape (Brassica napus L.) is an important crop in China. Although its yields are restricted by phosphorus (P) 
supply, the response of its root system to P supply has not been explored systematically. This study aimed to 
investigate the contribution of root morphological and biochemical traits to P acquisition from soils with defi
cient P (30 kg P2O5 ha− 1) and sufficient P (90 kg P2O5 ha− 1) supplies in the field at the leaf development, stem 
elongation, flowering, pod development and ripening stages. The total root length and root surface area in the 
surface soil (0− 10 cm soil layer) were both reduced significantly by decreasing P supply. However, a larger root/ 
shoot ratio and root length ratio were observed in plants with the deficient P supply at the flowering stage. Roots 
of plants with a deficient P supply also secreted more acid phosphatase and organic acid into the rhizosphere 
from stem elongation to pod development than plants with a sufficient P supply. Seed yield (SY), shoot dry 
weight (SDW) and total P content (TPC) were strongly correlated with root morphological traits at the leaf 
development and flowering stages, especially with the coarse root length (CRL) and root surface area in the 
surface soil. However, there were no correlations between SDW or TPC and root biochemical traits (rhizosphere 
pH, acid phosphatase activity and organic acid content). It is hypothesized that greater CRL in the surface soil 
(0− 10 cm soil layer) at the leaf development and flowering stages, served as a scaffold for fine roots, enhancing 
soil exploration and P acquisition, and, thereby, increasing seed yield.   

1. Introduction 

Oilseed rape (Brassica napus L.) is one of the most important and 

profitable oil crops in the world (Hu et al., 2017; Friedt et al., 2018). 
More than 20 % of the world’s planted area of oilseed rape is in China 
(FAO, 2007–2016), and 50–70 % of this is located in the Yangtze River 

Abbreviations: TPC, Total phosphorus content; SDW, Shoot dry weight; RDW, Root dry weight; SY, Seed yield; TRL, Total root length in 0− 30 cm soil layer (mm 
plant− 1); TRL1, Total root length in 0− 10 cm soil layer (mm plant− 1); TRL2, Total root length in 10− 30 cm soil layer (mm plant− 1); FRL, Root length of 0− 2 mm root 
diameter in 0− 30 cm soil layer (mm plant− 1); FRL1, Root length of 0− 2 mm root diameter in 0− 10 cm soil layer (mm plant− 1); FRL2, Root length of 0− 2 mm root 
diameter in 10− 30 cm soil layer (mm plant− 1); CRL, Root length of 2− 5 mm root diameter in 0− 30 cm soil layer (mm plant− 1); CRL1, Root length of 2− 5 mm root 
diameter in 0− 10 cm soil layer (mm plant− 1); CRL2, Root length of 2− 5 mm root diameter in 10− 30 cm soil layer (mm plant− 1); RSA, Root surface area in 0− 30 cm 
soil layer (mm2 plant− 1); RSA1, Root surface area in 0− 10 cm soil layer (mm2 plant− 1); RSA2, Root surface area in 10− 30 cm soil layer (mm2 plant− 1); APA, Acid 
phosphatase activity (mg PNP h− 1 g− 1 soil); OAC, Organic acid content (μmol g− 1 soil); pH, Rhizosphere pH. 
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basin (approx. 7.52 Mha), which has weathered acid soils (mostly ulti
sols and oxisols) that are severely phosphorus (P)-deficient (Yan et al., 
2006). Both aluminum (Al) and iron (Fe) oxides are enriched in these 
soils, which limits the phyto-availability of phosphate (Pi). This results 
in very low P-fertilizer use efficiency of Brassica napus crops in the 
growing season (Larsen, 1967; Parfitt, 1989; Holford, 1997) and, often, 
symptoms of P-deficiency, which include purpling of cotyledons, dark
ening of older leaves, and plants with fewer branches and reduced seed 
set (Ding et al., 2012; Shi et al., 2013a, b). Thus, strategies to improve P 
acquisition are essential to achieve commercially viable seed yields of 
Brassica napus in this region. 

Previous studies have suggested that manipulating root system 
morphology can improve P acquisition and, thereby, increase crop 
yields and the efficiency by which P fertilizers are used in agricultural 
systems (Shen et al., 2011; Lynch and Brown, 2012; Lambers et al., 
2006; White et al., 2013; Wang et al., 2018). Lynch and Brown (2001) 
observed that root systems with a shallow architecture have enhanced P 
foraging in the P-enriched topsoil, which is an advantage for plants 
growing in soils with low P availability. In addition, denser lateral root 
branching in the topsoil improves P acquisition in soils with low P 
availability, as observed, for example, in maize (Jia et al., 2018; Sun 
et al., 2018). Both Koscielny and Gulden (2012) and Thomas et al. 
(2016a) observe that the root length of Brassica napus plants measured at 
the seedling stage in the laboratory correlated positively with seed yield 
in field experiments. Brassica oleracea responds to reduced P supply by 
decreasing primary root length, increasing the diameter of roots, and 
producing more lateral roots and root hairs at the seedling stage in a 
‘pouch and wick’ system (Hammond et al., 2009). However, Brassica 
napus produces fewer roots and has a shorter total root length (TRL) at 
the seedling stage when grown with a deficient P supply than when 
grown with a sufficient P supply in a rhizotron system filled with soil 
(Yuan et al., 2016). Moreover, at crop maturity the number of roots, TRL 
and root/shoot ratio of Brassica napus grown with a deficient P supply 
are far lower than when grown with a sufficient P supply (Yuan et al., 
2016). 

Rhizosphere chemical and biological processes, mainly driven by 
root exudates, also play an important role in the acquisition of soil P, 
especially when P is in limited supply (Neumann and Römheld, 1999; 
Dong et al., 2004; Tawaraya et al., 2013; White et al., 2013). Roots of 
Brassica napus can release malic and citric acids, which solubilize inor
ganic P salts, and acid phosphatases, which degrade organic P com
pounds, into the soil to increase the P supply to plants when P supply is 
low (Zhang et al., 1997; White et al., 2005; Akhtar et al., 2008; Wang 
et al., 2015; Lyu et al., 2016). However, little work has been undertaken 
to determine the relative contributions of root system morphology and 
root exudates on P acquisition and seed yield throughout the develop
ment of a Brassica napus crop grown in the field with either sufficient or 
deficient P supply. 

In this study, four Brassica napus cultivars were used to characterize 
(1) the morphological and biochemical (exudation) traits of Brassica 
napus root systems grown with sufficient or deficient P supply and (2) 
the major root traits that contribute to greater shoot dry weight (SDW), 
total P content (TPC) and seed yield (SY) during the lifetime of Brassica 
napus grown in the field. These results will provide a better under
standing of the root traits that might be targeted for breeding Brassica 
napus with greater P use efficiency and yield in both the Yangtze River 
basin and elsewhere on soils with limited Pi availability (Wang et al., 
2018). 

2. Materials and methods 

2.1. Materials 

Four Brassica napus cultivars with different root morphological traits 
(10C25, WY29, Haishen and Xinan28) were selected from an association 
panel collected from major breeding centers across China (Liu et al., 

2016) based on their root system architecture in a “pouch and wick” 
system (Wang et al., 2017). Cultivar WY29 had the longest total root 
length (TRL), primary root length (PRL) and lateral root length (LRL), 
and the largest lateral root number (LRN) of the four cultivars. Cultivar 
Xinan28 had the shortest TRL, PRL and LRL and the smallest LRN of the 
four cultivars (Supplemental Table 1). 

2.2. Soil type and experimental design 

Two years of field trails were conducted at the experimental site of 
Huazhong Agricultural University in Wuhan from October 2015 to May 
2017 (114.3 ◦E, 30.5 ◦N). The soil was a yellow-brown soil (Alfisol), and 
its properties were as follows: pH 6.84 (1:5 soil solution ratio, AFNOR, 
1994), organic matter 12.99 g kg− 1, NH4OAc-extracted potassium (K) 
141.14 mg kg− 1, total nitrogen (N) 0.70 g kg− 1, available N 51.30 mg 
kg− 1, and Olsen-P 9.79 mg kg− 1. All the plots received basal fertilizer, 
including 60 % of the total N applied (supplied as urea), and all the P 
(supplied as calcium superphosphate), K (supplied as potassium chlo
ride) and boron (supplied as Na2B4O7⋅10H2O). The application rates 
were as follows: N 108 kg ha− 1, K 120 kg ha− 1 and Borax15 kg ha− 1. 
There were two P treatments, namely (1) a sufficient P supply of 90 kg 
P2O5 ha− 1 (farmers’ fertilizer practice) (Zou et al., 2009; Lu, 2010) and 
(2) a deficient P supply of 30 kg P2O5 ha− 1. These fertilizers were 
thoroughly mixed and applied in bands near the crop rows. The 
remaining N was top dressed as urea in equal amounts at the four to 
five-leaf stage and at the stem elongation stage, respectively. 

A split-plot design with four blocks was adopted in 2015− 2016 and 
2016− 2017. The main plot treatments were P fertilizer dosages, and the 
sub-plot treatments were Brassica napus cultivars. The plot size was 2.4 
m length × 2.0 m width, with 30 cm row spacing and 30 cm plant 
spacing. Seeds of Brassica napus were sown by bunch planting with 
10–15 seeds per point on 10 October 2015 and 25 September 2016, 
respectively. Seedlings were thinned to one plant at each point at the 
five-leaf stage. The same planting and field management procedures 
were followed in both years. 

2.3. Sampling for shoot biomass and seed yield, and P analysis 

Plants were sampled at five growth stages classified according to the 
BBCH development scale for oilseed rape (Lancashire et al., 1991) and 
winter oilseed rape (Böttcher et al., 2016) (Table 1): leaf development 
stage (BBCH 15− 17), stem elongation stage (BBCH 30), flowering stage 

Table 1 
Sampling stages according to the BBCH development scale for Brassica napus.  

Sampling BBCH development 
scale (Plant stage) 

Growth description 

Stage 
1 

Year1: 
DAS 55 Leaf development 

(BBCH 15− 17) 
Plants have 5− 7 leaves unfolded 

Year2: 
DAS 62 

Stage 
2 

Year1: 
DAS 107 Stem elongation 

(BBCH 30) 
No internodes, stem begins to 
elongation Year2: 

DAS 105 

Stage 
3 

Year1: 
DAS 147 Flowering(BBCH 

60− 61) 

Plants have less than 10 % of 
flowers on main raceme open, main 
raceme elongating Year2: 

DAS 145 

Stage 
4 

Year1: 
DAS 180 Pod development 

(BBCH 70− 71) 
Plants have less than 10 % of pods 
have reached final size Year2: 

DAS 189 

Stage 
5 

Year1: 
DAS 216 Ripening 

(BBCH 89) 
Fully ripe: nearly all pods ripe 

Year2: 
DAS 227 

DAS: days after sowing. 
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(BBCH 60− 61), pod development stage (BBCH 70− 71) and ripening 
stage (BBCH 89). Each plot had a total of 48 plants with 8 rows and 6 
plants in each row. One plant from each plot was sampled at each 
growth stage. Ten of the 43 plants remaining in each plot at maturity 
were selected randomly to determine seed yield (SY). All the plants 
sampled were divided into shoot and root. The shoot samples were 
exposed to 105 ◦C for 30 min. and then dried at 70 ◦C until a constant 
weight was obtained. The P concentration in dried plant material was 
determined using the vanado-molybdate method (Westerman, 1990). 
Total P acquisition (total P content, TPC) per plant was defined as the 
sum of the amounts of P in shoot and root material (Hammond et al., 
2009; van de Wiel et al., 2016). 

2.4. Root samples 

Roots were sampled from excavated soil cubes. There were 27 soil 
cubes per plant, and the cube size was 10 cm × 10 cm × 10 cm (1000 
cm3). Cubes were dug one by one within a soil monolith of 30 cm × 30 
cm × 30 cm. Each soil cube was kept in a plastic bag and labeled. The 
roots in each cube were carefully removed from the soil, and five roots at 
the seedling stage and three roots at the stem elongation, flowering, pod 
development and ripening stages were selected randomly for the 
collection of root exudates. The method for collection of rhizosphere 
exudates was modified from Pearse et al. (2006, 2007) and Lyu et al. 
(2016). Roots were shaken lightly to remove the bulk soil from the root 
system, and the soil adhering to the roots was defined as rhizosphere 
soil. The roots with rhizosphere soil attached were transferred to a 200 
mL container containing 50 mL CaCl2 (0.2 mM). Roots were gently 
immersed in the solution for 1− 2 min to remove as much rhizosphere 
soil as possible and washed carefully to minimize root damage and 
leakage of solutes from damaged cells. Roots were then shaken lightly by 
hand and removed from the container. A subsample of the soil suspen
sion (0.5 mL) was transferred to a 2 mL centrifuge tube to measure acid 
phosphatase activity (APA) (Alvey et al., 2001), which represents 
secreted acid phosphatase activity (Neumann and Römheld, 1999; Shu 
et al., 2005). The soil suspension was then left to stand for 5− 10 mins. A 
second sub-sample (8 mL) of the supernatant from the soil suspension 
was transferred to a 10 mL vial, and then three drops of the microbial 
inhibitor Micropur (0.01 g L− 1; Sicheres Trinkwasser, Germany) and 
three drops of 85 % concentrated phosphoric acid were added to mea
sure organic acids from the rhizosphere soil. The organic acids were 
quantified using a reversed phase high-performance liquid chromatog
raphy (HPLC) system as described previously (Wang et al., 2007; Wang 
et al., 2010; Li et al., 2016). Rhizosphere pH was measured on a third 
subsample (8 mL) of the original supernatant (Li et al., 2008, 2010). The 
remaining soil suspension (33.5 mL) was air dried and the dry weight of 
the rhizosphere soil was determined to calculate the secreted acid 
phosphatase activity and organic acid content (Li et al., 2008, 2010). 

All roots collected from the soil monolith, including those used for 
measurements of acid phosphatase activity, organic acid release and 
rhizosphere pH were washed and stored at 4 ◦C for subsequent 
morphological analyses. For morphological analyses, roots were placed 
in a clear perspex tray with a film of distilled H2O and scanned with a 
modified flatbed scanner (Epson V700, Nagano-ken, Japan). The root 
images were analyzed using WinRHIZO software (Regent Instruments 
Inc., Quebec, Canada). Brassica crops have a taproot and lateral roots of 
different orders. In this study, lateral roots with diameters of 0− 2 mm 
were defined as fine roots (Jackson et al., 1997) and lateral roots with 
diameters of 2− 5 mm were defined as coarse roots (Tufekcioglu et al., 
1998; Bolte et al., 2004). The root length ratio (%) was defined as the 
ratio of root length in the surface soil layer (0− 10 cm) to the total root 
length of the whole soil profile (0− 30 cm). 

2.5. Statistical analyses 

Data were all analyzed using SPSS software (SPSS 19.0; IBM 

Corporation, Armonk, NY, USA). A one-way ANOVA was used to 
compare SDW, RDW, TPC, SY, root morphological traits in 0− 10 cm soil 
layer among four cultivars in each P treatment during the same growth 
stage. A two-way ANOVA was used to investigate the effect of P treat
ment on root morphological traits in 0− 10 cm soil layer among four 
cultivars and root biochemical traits between two P supplies during the 
same growth stage. The effect of the growth stage and P treatment on 
root/shoot ratio, percentage of TRL in 0− 10 cm soil layer and per
centage of CRL in 0− 10 cm soil layer of each cultivar were also inves
tigated by a two-way ANOVA. A three-way ANOVA was used to 
investigate the effects of soil depth of sampling, P treatment and cultivar 
on root morphological traits. Means were compared using Tukey’s test 
with P <0.05. In bar charts, significant differences were indicated by 
different letters above the bars. Pearson’s correlation analysis was used 
to test the linear correlations between TPC, SDW and SY and their re
lationships with root traits observed in plants grown with P deficient and 
P sufficient supplies in the two experimental years, separately. Principal 
component analysis (PCA) was used to evaluate the relationships among 
SY, SDW, TPC, eight root morphological variables (TRL1, total root 
length in 0− 10 cm; RSA1, root surface area in 0− 10 cm; CRL1, coarse 
root length in 0− 10 cm; FRL1, fine root length in 0− 10 cm; TRL2, total 
root length in 10− 30 cm; RSA2, root surface area in 10− 30 cm; CRL2, 
coarse root length in 10− 30 cm; FRL2, fine root length in 10− 30 cm) 
and four root biochemical traits (APA, acid phosphatase activity; OAC, 
malic acid and citric acid; pH; rhizosphere pH) in plants grown with P 
deficient and P sufficient supplies in the two experimental years. The 
first two principal components were used to describe the relationships 
between the root morphological and biochemical traits. 

3. Results 

3.1. Differences in SDW, RDW and total phosphorus content among four 
Brassica napus cultivars grown with sufficient and deficient P supplies 

The SDW and TPC of all cultivars increased gradually from the leaf 
development to the pod development stage in both P treatments (Figs. 1 
and 2). In both years, all cultivars had the largest SDW and TPC at the 
ripening stage when grown with a sufficient P supply (Figs. 1 and 2a, b, 
e, f). Cultivar Haishen had a smaller SDW and TPC than other cultivars 
from the stem elongation to the ripening stage in both P treatments in 
both years. Cultivar Xinan28 had the largest SDW of all cultivars from 
the flowering to the ripening stage at both P supplies in both years. 

The RDW increased rapidly from the leaf development to the flow
ering stage in both P treatments, in both years and in all cultivars 
(Fig. 1c, d, g, h). All cultivars had largest RDW at the pod development 
stage in both P treatments in both years, except cultivar 10C25, which 
had its largest RDW at the ripening stage in both P treatments. Cultivar 
Haishen had a smaller RDW than other cultivars from the stem elon
gation stage to the ripening stage in both P treatments. The largest root/ 
shoot ratio was observed at the flowering stage in all cultivars in both 
years and the root/shoot ratio was larger when plants were grown with a 
deficient P supply than when grown with a sufficient P supply at this 
growth stage (Fig. 3). 

Seed yield had significant (P <0.05) positive correlations with SDW 
in the P deficient treatment at all growth stages, while significant (P 
<0.05) correlations between SY and SDW were only found at the pod 
development and at the ripening stages in the P sufficient treatment in 
2016− 2017 (Supplementary Fig. 1). 

3.2. Differences in root morphological and biochemical traits among four 
Brassica napus cultivars grown with sufficient and deficient P supplies 

The root morphological traits of total root length (TRL), fine root 
length (FRL), coarse root length (CRL) and root surface area (RSA) all 
increased rapidly from the leaf development stage to the flowering 
stage, and then decreased from the pod development stage to the 
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Fig. 1. (a, b, e, f) Shoot dry weight (SDW) and (c, d, g, h) root dry weight (RDW) of Brassica napus cultivars 10C25, WY29, Haishen and Xinan28 from the leaf 
development stage to the ripening stage when grown with (a, c, e, g) a sufficient P supply and (b, d, f, h) a deficient P supply in (a, b, c, d) 2015-2016 and (e, f, g, h) 
2016-2017. The sufficient P supply was 90 kg P2O5 ha− 1 and the deficient P supply was 30 kg P2O5 ha− 1. Each value is the mean (±SE) of four replicates. The 
different small letters above the column indicate significant difference among the cultivars in the same P treatment during the same growth stage at P <0.05. 

Fig. 2. Total P content of Brassica napus cultivars 
10C25, WY29, Haishen and Xinan28 from the leaf 
development stage to the ripening stage when grown 
with (a, c) a sufficient P supply and (b, d) a deficient P 
supply in (a, b) 2015-2016 and (c, d) 2016-2017. The 
sufficient P supply was 90 kg P2O5 ha− 1 and the defi
cient P supply was 30 kg P2O5 ha− 1. Each value is the 
mean (±SE) of four replicates. The different small let
ters above the column indicate significant difference 
among cultivars in the same P treatment during the 
same growth stage at P <0.05.   
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ripening stage in all soil layers in both P treatments (P <0.001) and in 
both years (P <0.05), apart from the CRL increased from the leaf 
developmene stage to pod development and then decreased at the 
ripening stage in 2015-2016 (Tables 2 and 3). Root morphological traits 

in the 0− 10 cm soil layer, including TRL1 and FRL1, were significant (P 
<0.05) smaller from the leaf development stage to the flowering stage in 
both years, and RSA1 and CRL1 were significant (P <0.05) smaller at the 
leaf development, stem elongation, flowering and ripening stages in 

Fig. 3. Root/shoot ratios, expressed on a dry weight basis, at five growth stages for four Brassica napus cultivars grown with either a sufficient or a deficient P supply 
in 2015-2016 and 2016-2017. The sufficient P supply was 90 kg P2O5 ha− 1 and the deficient P supply was 30 kg P2O5 ha− 1. Each value is the mean (±SE) of four 
replicates. The different small letters above the column indicate significant difference between two P treatments among five growth stages each year at P <0.05. 

Table 2 
The effects of P supply on total root length (TRL), root surface area (RSA), fine root length (FRL) and coarse root length (CRL) in different soil layers at five growth 
stages of Brassica napus in 2015-2016.  

Year Growth stages Soil depth P treatments TRL (mm plant− 1) RSA (mm2 plant− 1) FRL (mm plant− 1) CRL (mm plant− 1) 

2015− 2016 

Leaf development stage 
0− 10 cm Sufficient P 168.2aa 49.9a 157.4a 7.5a 

Deficient P 128.3b 33.6b 122.2b 3.8b 

10− 20 cm 
Sufficient P 15.3c 2.5c 14.5c  
Deficient P 8.5c 1.5c 8.5c  

Stem elongation stage 

0− 10 cm 
Sufficient P 1597.3a 366.2a 1546.7a 39.5a 
Deficient P 1103.0b 260.2b 1076.0b 27.5b 

10− 20 cm 
Sufficient P 427.4c 81.1c 424.5c 2.7c 
Deficient P 214.1d 40.8d 213.2d 0.8d 

20− 30 cm Sufficient P 144.7e 29.0d 141.7e 1.4cd 
Deficient P 74.9f 14.5e 77.8f 0.3d 

Flowering stage 

0− 10 cm 
Sufficient P 2371.0a 644.1a 2259.1a 105.0a 
Deficient P 1764.7b 493.4b 1654.0b 82.6b 

10− 20 cm 
Sufficient P 495.3c 102.6c 484.7b 9.8c 
Deficient P 385.7c 76.7c 379.1b 6.9c 

20− 30 cm Sufficient P 46.5d 9.0ad 40.6d 0.3d 
Deficient P 103.8d 20.8d 101.7c 1.9d 

Pod development stage 

0− 10 cm Sufficient P 1893.1a 600.9a 1675.3a 120.2a 
Deficient P 1716.2a 545.0a 1580.4a 100.1b 

10− 20 cm 
Sufficient P 673.7b 150.6b 685.1b 16.4c 
Deficient P 621.5b 143.6b 599.5b 17.4c 

20− 30 cm 
Sufficient P 239.3c 48.5c 236.8c 2.0d 
Deficient P 215.1c 45.3c 210.8c 4.1d 

Ripening stage 

0− 10 cm Sufficient P 955.4a 447.0a 812.7a 103.7a 
Deficient P 871.0a 373.9b 758.2b 83.5b 

10− 20 cm Sufficient P 238.9b 70.2c 225.5c 10.8c 
Deficient P 238.5b 64.6cd 227.3c 10.8c 

20− 30 cm 
Sufficient P 172.7c 42.0de 167.2d 4.1d 
Deficient P 120.1c 28.4e 117.5d 3.2d 

aWithin a column for a given each growth stage, means of four Brassica napus cultivars followed by different letters are significantly different between two P treatment 
among different soil depth during the same growth stage at P <0.05. 
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2015− 2016 and significant (P <0.05) smaller at the leaf development, 
flowering and pod development stages in 2016− 2017 when plants were 
grown with a deficient P supply than when grown with a sufficient P 
supply (Tables 2 and 3). On average, more than 50 % of the TRL and 
more than 60 % of the CRL were found in the surface soil (0− 10 cm) in 
both sufficient and deficient P treatments across the whole growth 
period in both years (Supplementary Figs. 2 and 3). Averaged over both 
years, TRL1 was 23.4 % less with a deficient than with a sufficient P 
supply at the leaf development stage, 25.0 % less at the stem elongation 
stage, 20.7 % less at the flowering stage, 10.1 % less at the pod devel
opment stage, and 7.8 % less at the ripening stage. CRL1 was 42.2 % less 
at the leaf development stage, 18.1 % less at the stem elongation stage, 
19.2 % less at the flowering stage, 22.3 % less at the pod development 
stage, and 16.8 % less at the ripening stage (Tables 2 and 3). 

More acid phosphatase activity and organic acid (malic acid, citric 
acid and fumaric acid) were found in the rhizosphere soil from the stem 
elongation stage to the pod development stage in plants grown with a 
deficient P supply than in plants grown with a sufficient P supply. In 
both years, a lower rhizosphere pH was also observed in the rhizosphere 
soil when plants were grown with a deficient P supply than when plants 
were grown with a sufficient P supply (Supplementary Table 2). 

3.3. Correlations between SY, SDW, TPC and root morphological and 
biochemical traits of four Brassica napus cultivars growth with sufficient 
and deficient P supplies 

When plants received a sufficient P supply, TPC had significant (P 
<0.02 to 0.008) positive correlations with CRL1 and RSA1 in the 0− 10 
cm soil layer at the leaf development stage, and significant (P <0.05 to 
0.001) positive correlations were also found between SY and CRL1 and 
RSA1, and between TPC and CRL1 and RSA1 at the flowering stage in 
both years (Fig. 4a, c, e, g). 

When plants received a deficient P supply, SY had significant (P 
<0.05 to 0.001) positive correlations with CRL, RSA, CRL1 and TRL1 at 
the flowering stage in both years (Fig. 4b, d; Supplementary Fig. 4a, b). 

The TPC had significant (P <0.043 to 0.001) positive correlations with 
TRL and RSA (TRL1 and RSA1) at the flowering stage in both years 
(Fig. 4b, d; Supplementary Fig. 4a, b). At the leaf development stage, 
SDW had a significant (P =0.013) positive correlation with RSA1 in 
2015− 2016, and with CRL1 in 2016− 2017 (Fig. 4b, d). 

When plants received a sufficient P supply, significant (P <0.05 to 
0.001) positive correlations were observed between SY and APA at the 
leaf development stage, between SY and OAC at the flowering stage in 
2015− 2016 and at the ripening stage in 2016− 2017. When plants 
received a deficient P supply, SY had significant (P <0.05) correlations 
with APA at the flowering stage in 2015− 2016 and at the leaf devel
opment stage in 2016− 2017 (Fig. 4e, f, g, h). There were no correlations 
(P >0.05) between TPC or SDW and root biochemical traits (APA, OAC 
or Rhizos-pH) in either year at either P supply (Fig. 4e, f, g, h). 

3.4. Root morphological and biochemical traits of Brassica napus 
cultivars at the leaf development and flowering stages 

The results of PCA, with SY, SDW, TPC and eight root morphological 
traits (RSA1, CRL1, FRL1, TRL1 and RSA2, CRL2, FRL2, TRL2) and four 
root biochemical traits (CA, MA, APA, pH) of plants grown with a suf
ficient P supply showed that the first axis explained 33.3 % and 28.2 % 
in 2015− 2016, and 32.3 % and 37.5 % in 2016− 2017 of the variation 
among the twelve root traits at the leaf development and flowering 
stages, respectively (Fig. 5a, c, e, g). The first axis was mostly associated 
with root morphological traits in the 0− 10 cm soil layer (TRL1, RSA1, 
CRL1 and FRL1) in plants with a sufficient P supply at the flowering 
stage in both years (Fig. 5c, g). When plants were grown with a deficient 
P supply, the first axis of the PCA explained 30.6 % and 33.6 % in 
2015− 2016, and 38.8 % and 32.3 % in 2016− 2017 of the variation 
among the twelve root traits at the leaf development and flowering 
stages, respectively, and was also mostly associated with root morpho
logical traits in 0− 10 cm soil layer (TRL1, RSA1, FRL1 and CRL1) 
(Fig. 5b, d, f, h). 

In the surface soil (0− 10 cm soil layer), the FRL1 had significant (P 

Table 3 
The effects of P supply on total root length (TRL), root surface area (RSA), fine root length (FRL) and coarse root length (CRL) in different soil layer at five growth stages 
of Brassica napus in 2016-2017.  

Year Growth stages Soil depth P treatments TRL (mm plant− 1) RSA (mm2 plant− 1) FRL (mm plant− 1) CRL (mm plant− 1) 

2016− 2017 

Leaf development stage 
0− 10 cm 

Sufficient P 517.7aa 67.1a 509.8a 5.7a 
Deficient P 398.6b 52.4b 392.6a 3.7b 

10− 20 cm Sufficient P 104.9c 9.5c 104.9c  
Deficient P 81.0c 7.1c 81.0c  

Stem elongation stage 

0− 10 cm 
Sufficient P 1015.7a 452.2a 864.1a 119.8a 
Deficient P 822.8b 390.2a 686.3b 112.8a 

10− 20 cm 
Sufficient P 403.4c 161.4b 352.9c 45.2b 
Deficient P 310.6c 149.7b 249.9d 51.8b 

20− 30 cm 
Sufficient P 205.5d 95.5c 170.2d 29.7be 
Deficient P 85.5e 39.9d 69.7e 14.6e 

Flowering stage 

0− 10 cm Sufficient P 1694.0a 3712.9a 1135.0a 289.0a 
Deficient P 1419.3b 2845.5b 1078.5b 239.5b 

10− 20 cm 
Sufficient P 482.8c 182.4c 432.0c 40.2c 
Deficient P 379.4c 137.6c 341.7c 31.6c 

20− 30 cm 
Sufficient P 221.9d 65.8d 211.6d 9.8d 
Deficient P 169.6d 50.1d 162.4d 6.6d 

Pod development stage 

0− 10 cm Sufficient P 848.9a 557.3a 593.8a 66.6a 
Deficient P 757.1a 404.6b 558.8a 48.0b 

10− 20 cm Sufficient P 429.9b 180.9c 374.0b 43.5b 
Deficient P 368.4b 126.4d 340.1b 22.9c 

20− 30 cm 
Sufficient P 234.9c 78.6e 211.4c 14.4d 
Deficient P 259.0c 84.6e 243.2c 13.4d 

Ripening stage 

0− 10 cm 
Sufficient P 702.5a 578.2a 556.0a 101.1a 
Deficient P 655.4a 427.4b 521.1a 86.8a 

10− 20 cm Sufficient P 352.3b 209.8c 266.0b 63.1b 
Deficient P 332.9b 165.4d 274.6b 42.6b 

20− 30 cm Sufficient P 172.4c 77.6e 146.2c 20.6c 
Deficient P 167.1c 62.0e 151.1c 13.5c 

aWithin a column for a given each growth stage, means of four Brassica napus cultivars followed by different letters are significantly different between two P treatment 
among different soil depth during the same growth stage at P <0.05. 
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=0.001) correlation with CRL1 at the leaf development stage when 
plants were grown with a sufficient P supply in 2015− 2016, and sig
nificant (P <0.028 to 0.001) correlations with CRL1 at the flowering 
stage when plants were grown with either P supply in both years 
(Fig. 6a, b). The TPC had significant (P <0.043 to 0.023) correlations 
with fine root surface area and coarse root surface area at the leaf 
development stage when plants were grown with a sufficient P supply in 
both years (Fig. 6c, e), and significant (P <0.049 to 0.004) correlations 
with fine root surface area and coarse root surface area at the flowering 
stage when plants were grown with either P supply in both years 
(Fig. 6d, f). 

4. Discussion 

Four Brassica napus cultivars (10C25, WY29, Haishen, Xinan28) with 
contrasting root morphological and biochemical traits were used in this 
study. The TRL and LRL of cultivar Xinan28 were shorter than those of 

the other three cultivars when grown without P in a ‘pouch and wick’ 
system for 14 days (Supplementary Table 1). A previous study by 
Thomas et al. (2016b) reported that seed size could explain variation in 
total root length, primary root length and lateral root length of seedlings 
of Brassica napus grown with a deficient P supply. However, in the field 
trials reported here, it is unlikely that seed size was a major influence on 
root traits, even at the leaf development stage (Figs. 1 and 2). Compared 
to other cultivars, Haishen had the smallest TRL1, RSA1, CRL1 and FRL1 
(Supplementary Table 3), and the smallest RDW, SDW and TPC from the 
flowering stage to the ripening stage when grown with either P supply in 
the field (Figs. 1 and 2), but had the largest 1000-seed weight (Sup
plementary Table 1). Similarly, there were no significant differences in 
these traits among cultivars 10C25, WY29 and Xinan28 whether grown 
with a deficient or a sufficient P supply (Figs. 1 and 2), yet their 
1000-seed weight varied from 3.93 to 5.38 g (Supplementary Table 1). 

Both root morphological and biochemical traits are important for 
resource acquisition and, therefore plant growth and crop yield. Root 

Fig. 4. Pearson’s correlations between 
total P content (TPC), shoot dry weight 
(SDW) as well as seed yield (SY) and (a, 
b, c, d) root morphological traits (TRL1, 
RSA1, CRL1, FRL1) in the 0-10 cm soil 
layer and (e, f, g, h) root biochemical 
traits for (a, b, e, f) 2015-2016 and (c, d, 
g, h) 2016-2017 in plants grown with 
(a, c, e, g) a sufficient P and (b, d, f, h) a 
deficient P supply at different growth 
stages (S1 to S5). S1, leaf development 
stage, S2, stem elongation stage, S3, 
flowering stage, S4, pod development 
stage, S5, ripening stage. The sufficient 
P supply was 90 kg P2O5 ha− 1 and the 
deficient P supply was 30 kg P2O5 ha− 1. 
*P ≤0.05; **P ≤0.01.   
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traits show great plasticity in the adaptive responses of Brassica napus 
plants to P deficiency (Ligaba et al., 2004; Zhang et al., 2009, 2010; 
Yang et al., 2010; Hu et al., 2010; Lyu et al., 2016). The results presented 
here suggest that root morphological traits play a more important role in 
the adaptation of Brassica napus to low soil P supply than root 
biochemical traits (Figs. 4 and 5). There were strong positive correla
tions between SY, SDW and TPC and CRL1, FRL1, TRL1 and RSA1 in the 
topsoil (Fig. 4; Supplementary Fig. 4). The PCA results also indicated 
that root morphological traits in the topsoil at the leaf development and 
flowering stages were most strongly associated with SDW and SY 
(Fig. 5). Although the rhizosphere of plants grown with a deficient P 
supply had a lower pH, more acid phosphatase activity and greater 
organic acid content than plants grown with a sufficient P supply at the 
flowering stage in both years (Supplementary Table 2), there were no 
correlations between SDW or TPC and root biochemical traits (APA, 
OAC or pH) at any growth stage at either P supply (Fig. 4e, f, g, h). This 
might be because the APA and OAC in the rhizosphere are influenced by 
both microorganisms and soil properties (Rovira, 1959; Husain and 
McKeen, 1963; Jones et al., 2003). To our knowledge, this is the first 
study to compare the relative contributions of root morphological and 
biochemical adaptations to P supply on TPC, SDW and SY of Brassica 
napus in the field over the whole growth cycle. 

Plants grown with a deficient P supply had larger total root length 
ratio and coarse root length ratio in the surface soil (0− 10 cm soil layer) 
and a larger root/shoot ratio at the flowering stage than plants grown 
with a sufficient P supply (Fig. 3; Supplementary Figs. 2 and 3). This is 
consistent with the observations of Yuan et al. (2016) for Brassica napus 
grown in soil in a rhizobox. It is anticipated that a greater root length 
and surface area in the surface soil will benefit P foraging by Brassica 
napus in the field (Liu et al., 2011; Lyu et al., 2016; Yuan et al., 2016). 

When P is deficient, many Brassica species respond by thickening 

primary roots, and investing biomass in both lateral roots and root hairs 
to explore a greater volume of soil and thereby access more P (White 
et al., 2005; Hammond et al., 2009). In the present study, increased 
distribution of coarse roots in the surface soil (0− 10 cm soil layer) 
appeared to enable Brassica napus to increase P acquisition at the leaf 
development and flowering stages (Fig. 6). Cornish et al. (1984) found 
that P acquisition was positively correlated with root extension and that 
greater root length could improve root contact with the soil and increase 
P uptake. Thus, more coarse roots provide a larger root surface area, 
which enables greater P uptake from the soil (Fig. 5; Cornish et al., 1984; 
Haling et al., 2013). 

Normally, fine roots have a greater effect on P acquisition than 
coarse roots (Föhse et al., 1991; Gahoonia and Nielsen, 2004), since they 
comprise most of the root length and surface area responsible for water 
and nutrient uptake (Zobel et al., 2007; Liu et al., 2010; Ulas et al., 
2012). Furthermore, fine roots enable plants to explore a larger volume 
of soil with a smaller metabolic investment in root tissue (Eissenstat, 
1992; Miller et al., 1998). In this study, TPC significantly correlated with 
FRL1 at the leaf development and flowering stages when plants were 
grown with a sufficient P supply, and at the flowering stage when plants 
were grown with a deficient P supply in 2015− 2016 (Fig. 4). Although 
there were no significant correlations between TPC and FRL at any 
growth stage or P supply in 2016− 2017 (Fig. 4), significant correlations 
were observed between TPC and fine root surface area at both P supplies 
in both years (Fig. 6). Moreover, in the surface soil, there were signifi
cant correlations of FRL with CRL at the leaf development stage when 
plants were grown with a sufficient P supply in 2015− 2016, and at the 
flowering stage when plants were grown with either P supply in both 
years (Fig. 6). Plant TPC showed a greater correlation with the length of 
coarse roots in the surface soil (CRL1) than with fine roots in the surface 
soil (FRL1) in the present study (Fig. 4). This positive effect of coarse 

Fig. 5. Principal component analysis (PCA) of SY, SDW, TPC, eight root morphological traits (recorded at 0-10 cm and 10-30 cm) and four root biochemical traits 
determined on four Brassica napus cultivars grown with (a, c, e, g) a sufficient P supply or (b, d, f, h) a deficient P supply at (a, b, e, f) the leaf development and (c, d, g, 
h) the flowering stages in (a, b, c, d) 2015-2016 and (e, f, g, h) 2016-2017. The sufficient P supply was 90 kg P2O5 ha− 1 and the deficient P supply was 30 kg P2O5 
ha− 1. *P ≤0.05; **P ≤0.01. 
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roots in the topsoil on P acquisition might be achieved: (1) by providing 
a scaffold in the topsoil for the production of fine roots to forage for P 
(Fig. 7;Atkinson and Wilson, 1980; Rubio et al., 2003; Kosola et al., 
2007) or (2) by facilitating the root system of Brassica napus to penetrate 
the heavy clay soil effectively (Lin et al., 2013; Jin et al., 2017). 

Many studies indicate that a topsoil foraging phenotype improves P 
acquisition from the soil (Bonser et al., 1996; Ge et al., 2000; Liao et al., 
2001; Lynch and Brown, 2001; Lynch, 2011; White et al., 2013). In 

China, most of the Brassica napus crop is grown in yellow- brown soils, 
which have very sticky texture and a very poor soil pore system (Xi, 
1998). Coarse roots can resist buckling and might facilitate the pene
tration of densely compacted soils by the root system (Pietola and 
Smucker, 1998; Price et al., 2000; Clark et al., 2002; Chimungu et al., 
2015). Fine roots arising from the coarse roots might then follow soil 
pores created by coarse roots or subterranean biota for greater resource 
acquisition and improved plant growth (Jin et al., 2017). Thus, the 

Fig. 6. Pearson’s correlation between (a, b) fine root length (FRL) and coarse root length (CRL), total P content (TPC) and (c, d) fine root surface area, (e, f) coarse 
root surface area in the topsoil (0-10 cm soil layer) of plants grown with a sufficient P and a deficient P supplies at the leaf development and flowering stages, 
respectively. The sufficient P supply was 90 kg P2O5 ha− 1 and the deficient P supply was 30 kg P2O5 ha− 1. *P ≤0.05; **P ≤0.01. 
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establishment of coarse roots at the leaf development and flowering 
stages of Brassica napus would benefit penetration of the soil, and sub
sequent root branching and root exploration to improve P acquisition 
(MacDuff et al., 1986; Yuan et al., 2016). It was also observed that the SY 
of Brassica napus was significantly correlated with CRL1 at the flowering 
stage (Fig. 4). Compared with fine roots, coarse roots might also increase 
the lifetime of the root system and extend the duration of resource 
acquisition (Gill and Jackson, 2000; Gill et al., 2002; Adams et al., 2013; 
Hunter et al., 2014). This would allow the root system of Brassica napus 
to acquire not only P but also other nutrients to maintain the branches 
and seed pods formed in the later stages of crop development (Berry 
et al., 2010; Ding et al., 2012; Shi et al., 2013a, b). This is very important 
for yield formation in Brassica napus (Luo et al., 2015). Maintaining an 
appropriate functional equilibrium between the root, supplying mineral 
nutrients, and the shoot, supplying photosynthate, throughout the 
growth cycle of a crop is likely to maximize both crop yields and quality 
attributes (Fu, 2000; Hermans et al., 2006). Therefore, increasing the 
proportion of coarse roots in the topsoil might provide multiple benefits 
to the Brassica napus crop (Fig. 7). 

5. Conclusions 

Plant biomass and root morphology at the leaf development and 
flowering stages are very important for the seed yield of Brassica napus. 
At these two stages, the length and surface area of coarse roots in the 
topsoil were correlated with P acquisition, shoot biomass and eventual 
seed yield of plants grown in the field with either a sufficient or a 
deficient P supply. Root morphological traits played a more important 
role than root biochemical traits in the adaptation of Brassica napus to a 
deficient soil P supply. It is hypothesized that increasing the length of 
coarse roots in the topsoil allowed greater topsoil foraging by enabling 
the root system to penetrate the heavy clay soil and by providing a 
scaffold for the development of fine roots. 
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